
Revision 6 – 01/25/2006

eMedia Card Designer
Plug-In SDK

This document and the accompanying software are registered trade marks of Mediasoft Technologies. No
part of this document may be reproduced by any method, mechanical, electronic, photographic, or
otherwise without prior written permission from Mediasoft Technologies.

As we continuously improve and update the software and the documentation described in this document, its
contents are subject to change at any time without notice.

eMedia knowledge base – Technical note #17 - 2 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

This document contains references to registered trade marks. IBM, PC are registered trade
marks of International Business Machines, Inc. Intel, Pentium are registered trade marks of
Intel Corporation. Microsoft Windows, Microsoft Word, Microsoft Excel, COM, DCOM, Microsoft
Visual Basic, Microsoft Visual C++, Microsoft Visual Studio are registered trade marks of
Microsoft Corporation. Adobe Acrobat is a registered trade mark of Adobe Systems
Incorporated.

The computer program this SDK refers to is intended to be run on any IBM PC or compatible
computer, running Microsoft Windows 9x, NT, 2000, XP and 2003 Operating Systems.

This computer program is a COM/DCOM Server/Client and is strictly compliant with the
COM/DCOM interfaces as described in the specification defined by Microsoft Corporation.

Please refer to the End-user license and the limited warranty terms for any questions that may
concern the license usage granted by Mediasoft Technologies to the registered user.

Should you have any question regarding this document, its contents or the computer software
"eMedia Card Designer", please contact us:

Web: http://www.emedia-cards.com

e-mail: support@emedia-cards.com

Postal address:

Mediasoft Technologies
228, rue de la Convention
75015 Paris – France

This document is part of the Plug-Ins SDK, available on the eMedia Card Designer web site as
a downloadable package, and in the technical notes of the support section.

http://www.emedia-cards.com
mailto:support@emedia-cards.com?subject=Plug-Ins%20SDK

eMedia knowledge base – Technical note #17 - 3 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

CONTENTS
Revision information ... 5

Summary .. 6

About the plug-ins .. 6

About this document ... 6

What is needed to create your own plug-in... 7

Copying the files... 7

Registering the COM component ... 7

Registering the plug-in in eMedia .. 7

The plug-in descriptor file .. 8

Opening the Sample plug-in source code ... 9

Class and project properties ... 9

Plug-in source code... 9

PART I – PLUG-IN COMPONENT REFERENCE
Reference.. 11

Properties and methods list .. 11

Active property .. 12

EPI_Initialize method .. 13

EPI_GetCardObject method.. 14

EPI_Terminate method.. 15

EPI_Preferences method.. 16

EPI_Supports method.. 17

EPI_SetMode method .. 18

EPI_Job method ... 19

EPI_Database method ... 21

EPI_DataTransmit... 22

Functions calls ... 23

Database record addition ... 24

Database record modification ... 24

Database record deletion ... 25

CoolReader finds a record .. 25

New card template created .. 26

Card template opened ... 26

Card template saved ... 26

Card printout ... 27

Photo acquisition .. 28

PART II – THE CARDOBJECTS CLASS REFERENCE
Reference.. 30

Methods list ... 30

GetCardFilename.. 31

GetSides ... 32

GetCardBackgroundFile ... 33

GetCardBackgroundPrint.. 34

SaveBitmap ... 35

eMedia knowledge base – Technical note #17 - 4 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

GetObjectName.. 37

GetObjectType ... 38

GetObjectProperty .. 39

Request .. 40

Objects properties .. 41

Code samples .. 45

eMedia knowledge base – Technical note #17 - 5 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

REVISION INFORMATION
This SDK document is available for the build 582 and more of eMedia Card Designer. For any
information in this document that may refers to/from a specific build number, this number will
be described.

The part II of this document is only available for build 631 and more of eMedia Card Designer.

This document was last updated on Wednesday, January 25, 2006 22:00 GMT.

eMedia knowledge base – Technical note #17 - 6 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

SUMMARY
This document describes how to create your own plug-in that could be used in eMedia to
obtain more functionalities of the software.

About the plug-ins

Plug-ins can be implemented using Microsoft Visual Basic™, Microsoft Visual C++™ with MFC
or ATL libraries or other development tool having the ability to create COM components.

Plug-ins are in-process or out-of-process COM components that expose through the standard
interfaces methods and properties having a specific name. These methods and properties are
called by the eMedia program when the end user:

• Prints out a card,

• Adds a record to the database,

• Deletes a record in the database,

• Modifies a record in the database,

• A record is found using CoolReader™,

• Creates a new card,

• Opens a card,

• Saves a card,

• Acquires a photo,

• Switches to design mode or operating mode,

• Selects the plug-in in the "Tools" menu.

Plug-ins can have a configuration interface to help the end user to customize it. The
configuration interface is called through a specific method when the end user chooses the
"Plug-ins" command in the "Tools" menu, then selects the plug-in name.

This document demonstrates the development of a custom plug-in, starting with the sample
plug-in source files available in the Plug-Ins SDK provided in the download section of the
internet site.

All the code examples shown below are written in Microsoft® Visual Basic™.

About this document

To implement your own plug-in, you'll have to create an in-process COM component or an out-
of-process COM component.

This component must contain a class with specific methods and properties names. These are
detailed in the part I of this document.

Your component may have to retrieve the characteristics of the current card template opened
in eMedia Card Designer. For this purpose, one of the methods of the component is called by
eMedia and provides a class object. The properties and methods of this object are described in
the part II of this document.

eMedia knowledge base – Technical note #17 - 7 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

WHAT IS NEEDED TO CREATE YOUR OWN PLUG-IN
In order to use the plug-in in eMedia, you must provide to the end user the following:

• The compiled plug-in file (.dll file or .exe file)

• The plug-in descriptor file (.emp file)

The end-user will then perform the three following tasks:

1. Copy the files into a folder (usually the eMedia installation folder),

2. Register the COM component,

3. Register the plug-in in eMedia.

The end user must be logged into the system with administrative rights, and the eMedia Card
Designer software must not be running.

Copying the files

You can provide to the end user the .exe or .dll file and the .emp file on a floppy disk or a CD-
ROM. The user will then copy these files into a folder of the hard disk. Usually, the files are
copied in the eMedia Card Designer installation folder.

You may provide to your end user an installation package which will copy and register the
plug-in.

If your plug-in is developed using Microsoft® Visual Basic™, you will not have to provide
neither the VB runtime, the ADO 2.5 libraries or the COM/DCOM files, as these libraries are
already installed on the client computer by the eMedia Card Designer installation process.

Registering the COM component (optional)

When a COM component is installed on a computer, it must be recognized by Windows. For
that purpose, keys must be written in the system Registry. To do so:

• If the component is an out-of-process COM component (e.g. the file have the .exe
extension), the user must launch it one time to perform the registration. The file can
also be launched with the /REGSERVER command-line option.

• If the component is an in-process COM component (e.g. the file have the .dll
extension), the user must launch the REGSVR32.EXE program with the .dll file name
as a command-line parameter.

For instance: Your plug-in file is named MyPlugIn.dll. The user will start a command prompt
window, browse to the folder containing the file, will then type:

REGSVR32 MyPlugIn.dll

This registration is optional if the user registers the plug-in by using the "Add plug-in" button
in the "Select plug-in" dialog box (see below), as eMedia proceeds to the registration of the
COM component by itself. But, if you plan to provide an installation package, you will have to
register the COM component in the system registry by yourself.

Registering the plug-in in eMedia

eMedia needs to recognize a COM component as one of its plug-ins. To do so, the user must
register it in eMedia by adding and selecting it in the "Select plug-in" dialog box. To do so:

• Start eMedia Card Designer, Professional or Expert version (or standard version with
the demonstration mode enabled).

eMedia knowledge base – Technical note #17 - 8 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

• Open the "Tools" menu,

• Select the "Plug-Ins" command,

• Click on the "Select plug-ins" sub-command.

• In the "Select plug-ins" dialog box, click on the "Add plug-in" button.

• Select the plug-in descriptor file (.emp file) and click "Open".

• Click OK in the "Select plug-in" dialog box.

If you plan to provide the plug-in with an installation package, you can perform this operation
by yourself: modify the system Registry in that way:

1. Create a registry key having your plug-in name in the following registry key:
HKEY_LOCAL_MACHINE\Software\Mediasoft Technologies\eMedia\Plug-Ins

2. In this key, create the value ProgID of REG_SZ type. Populate the data of this value
with the ProgID of your COM component.

3. Add a new value in the following registry key:
HKEY_CURRENT_USER\Software\Mediasoft Technologies\eMedia\Plug-Ins
Set the value data to the friendly name of your plug-in.

The HKEY_CURRENT_USER\... value specifies what plug-in are active for the current user. The
data of these values are used to retrieve the HKEY_LOCAL_MACHINE\... key. In this key, the
data of the ProgID value is used by the eMedia Card Designer program to instantiate the
component. There may be more than one Active value in the HKEY_CURRENT_USER\... key, as
more than one plug-in may be active at the same time. The values are named (by default)
Active 1, Active 2, Active 3, etc

The plug-in descriptor file

Once your plug-in implemented and compiled into a COM component (either as an ActiveX EXE
or an ActiveX DLL), you must prepare the descriptor file.

This file is only needed if you don’t plan to provide an installation package. This file will be
selected by the end user when he will click on the "Add plug-in" button of the "Select plug-in"
dialog box. If you plan to provide an installation package, you can avoid the descriptor file
creation and perform the tasks described above.

The plug-in descriptor file contains the plug-in description, which would be read by eMedia
Card Designer when the end user registers the plug-in into eMedia. It is a profile file,
containing only one section named "Plug-In". This section contains the four following keys:

• Type: this key MUST contain the text: "eMedia Plug-In Definition File". This key is
read by eMedia to assume that this file contains a plug-in description.

• File name: this key contains the plug-in file name. This is used by eMedia Card
Designer to register the COM component into the system registry.

• ProgID: this key contains the ProgID of the COM component (i.e. the project name
and the class name of your plug-in separated by a dot).

• Title: this key contains a friendly text representing your plug-in. eMedia will create
this key in the system registry (see step #1 in the previous paragraph above), and will
add the ProgID value containing the data found in the ProgID key of the descriptor
file.

eMedia knowledge base – Technical note #17 - 9 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

OPENING THE SAMPLE PLUG-IN SOURCE CODE
The sample plug-in provided in the Plug-Ins SDK is a Microsoft® Visual Basic™ project. You
can open it with Visual Studio 6, or by double-clicking on the .vbp file.

The sample plug-in consists of a VB class, called "Sample", containing the entry points of the
component as public methods and functions. Currently, these methods and functions only
display a message box.

You can modify the code of these methods and functions, change the class properties and the
project properties, and then recompile the component.

This article will explain you how to modify these information.

Class and project properties

The first things that you may change are the class and project names, as these information
permit to build the ProgID of your component. The project name will be the left part of the
ProgID, and the class name will be the right part of the ProgID:

In the sample plug-in, the project name is eMediaSample, and the class name is Sample. Then,
the ProgID of the COM component will be eMediaSample.Sample.

To change the project name, open the "Project" menu and select the "Project properties"
choice. In the "Project properties" dialog box, click on the "General" tab, then change the
contents of the "Project name" text-box.

To change the class name, click on the class in the project explorer pane, then change the
"Name" property of the class in the properties pane.

You can also customize the project information (such as the project type (select ActiveX EXE or
ActiveX DLL), the startup object, the component description, the compatibility mode and the
version information) in the "Project properties" dialog box.

Plug-in source code

In the class code, you will find first the enumerations that are used for method parameters. Do
not change these enumerations, as these values are transmitted from eMedia Card Designer.

The m_Operation, m_Active, m_Recordset and m_eMediaObject private variables are used
internally by the class. All these variables may be deleted from the source code if you don't
need them:

• m_Operation stores the current running operation (see EPI_Job),

• m_Active contains the activity flag of the plug-in (see Active),

• m_Recordset contains the copy of the ADO recordset currently used by eMedia Card
Designer (see EPI_Database),

• m_eMediaObject contains the instance of the CardObjects class provided by eMedia
Card Designer (see EPI_GetCardObject).

eMedia knowledge base – Technical note #17 - 10 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

PART I

PLUG-IN COMPONENT REFERENCE

eMedia knowledge base – Technical note #17 - 11 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

REFERENCE
In the following pages, the properties and methods of the plug-in are described.

Basically, the plug-in you'll create must contain the following property and the following
methods. If you don't implement these, your plug-in will not be able to execute code for the
corresponding interfaces, but eMedia Card Designer will not crash.

If some of these properties and methods are not useful, implement them without any code in
the corresponding functions, so you'll be able to modify your plug-in later without any need to
refer to this documentation.

In the list below, the "Name" column contains the name of the property or method. The
"Description" column gives some information about the purpose of the class member, and
build describes the minimum eMedia Card Designer build number needed to implement this
class member.

Properties

Name Description Build

Active Specifies if the plug-in is enabled or not. 582+

Methods

Name Description Build

EPI_Initialize Plug-In initialization. 582+

EPI_GetCardObject Provides to the plug-in the instance of the CardObjects
class of eMedia Card Designer. The class members
allow the plug-in to retrieve all the characteristics of
the current opened card.

630+

EPI_Terminate Plug-In termination. 582+

EPI_Preferences Called when the user selects the plug-in name in the
"Plug-ins" command of the "Tools" menu in eMedia
Card Designer.

582+

EPI_Supports Called to ask the plug-in if a specific operation is
supported.

582+

EPI_SetMode Called when the user switches between design and
operating modes.

582+

EPI_Job Informs the plug-in that an operation is about to begin
and/or to end.

582+

EPI_Database Provides the current ADO recordset used in eMedia
Card Designer to the plug-in.

582+

EPI_DataTransmit Provides to the plug-in one of the current eMedia Card
Designer object name and value.

582+

eMedia knowledge base – Technical note #17 - 12 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

Active
This property has a Boolean type. It can be set to FALSE (zero) or TRUE (all value different
from zero, usually -1).

This property is set by your program if you want to give your user the ability to use or not your
plug-in.

Typically, this will be done by a configuration dialog box, containing a check box that will
reflect the value of the Active property. The configuration dialog box will be called by the
EPI_Preferences method.

eMedia will check the Active property of your plug-in before every call to the EPI_Job,
EPI_Database and EPI_DataTransmit. If your property is set to TRUE, the call is done. If your
property is set to FALSE, no call is done.

If you don’t plan to use this functionality, either set the m_Active private data to TRUE in the
EPI_Initialize method, or replace the Active Property Let/Get by the following code:

Current implementation Replace by…

'In the general declarations section
Private m_Active As Boolean

'In the class module code

Public Property Let Active(_
 ByVal vActive As Boolean)
 m_Active = vActive
 If vActive Then
 MsgBox "The sample plug-in " & _
 "has been activated"
 Else
 MsgBox "The sample plug-in " & _
 "has been deactivated"
 End If
End Property

Public Property Get Active() _
 As Boolean
 Active = m_Active
End Property

'In the general declarations section
'Delete the declaration

'In the class module code

Public Property Get Active() _
 As Boolean
 Active = True
End Property

Property declaration:

Public Property Let Active(ByVal vActive As Boolean)

Public Property Get Active() As Boolean

See also:

EPI_Initialize method

EPI_Preferences method

EPI_Database method

EPI_DataTransmit method

eMedia knowledge base – Technical note #17 - 13 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

EPI_Initialize
This method is called by eMedia Card Designer when it is necessary to initialize the plug-in
(eMedia startup or plug-in activation). This method accepts one String parameter (LPSTR
C/C++ type) which specifies the language used in the eMedia interface, as you may want to
use the same language in your Plug-In.

This method is a function which must return FALSE (zero) or TRUE (-1). If this function returns
false, eMedia considers that the plug-in cannot be activated. None of the methods of the plug-
in will be then called anymore.

Function declaration:

Public Function EPI_Initialize(ByVal CurrentLanguage As String) As Boolean

Return value:

True (-1) if the plug-in can be called from eMedia Card Designer, false (0) otherwise.

See also:

EPI_GetCardObject method

EPI_Terminate method

eMedia knowledge base – Technical note #17 - 14 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

EPI_GetCardObject
This method is called by eMedia Card Designer just after the EPI_Initialize method. The
provided parameter of this call is an instance of the eMedia Card Designer CardObject class.
Storing this instance allows the plug-in to retrieve all the characteristics of the current card
opened in the software, for instance to retrieve the card properties, objects list and objects
properties.

Function declaration:

Public Sub EPI_GetCardObject (TheObject As Object)

Return value:

No return value.

Notes:

In the declaration of the function, the parameter type has been set to the generic type
Object. You may transform this type to eMedia.CardObject to allow early binding,
referencing the eMedia Card Designer component from the "References" command of the
"Project" menu.

The class members of the CardObject class are detailed later in this document.

See also:

EPI_Initialize method

CardObject class members

eMedia knowledge base – Technical note #17 - 15 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

EPI_Terminate
This method is called by eMedia Card Designer when it is necessary to terminate the plug-in
processing (such as when eMedia stops or when the plug-in is deactivated). This method
doesn’t accept any parameter nor returns a value.

Function declaration:

Public Sub EPI_Terminate()

See also:

EPI_Initialize method

eMedia knowledge base – Technical note #17 - 16 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

EPI_Preferences
This method is called by eMedia Card Designer when the user selects the plug-in name in the
"Plug-ins" menu. You may implement in this method a call to a configuration dialog box, an
about dialog box or any configuration code.

The parameter is the main eMedia form object and can be used in the Plug-in to retrieve the
properties of the main form (such as its position, its hWnd, etc). The parameter is declared in
the Plug-in as the Object generic type, but it is at running time an instance of the Form class
of Microsoft® Visual Basic™ 6.0.

Function declaration:

Public Sub EPI_Preferences(AppForm As Object)

See also:

EPI_Initialize method

eMedia knowledge base – Technical note #17 - 17 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

EPI_Supports
This method is called by eMedia Card Designer to check if your plug-in supports the requested
function. This method is called before any call to the EPI_Job method. If this method returns
TRUE, then the EPI_Job, EPI_Database and EPI_DataTransmit methods will be called.
Otherwise, none of them will be called. This method helps eMedia Card Designer to run faster,
by avoiding unneeded calls.

The EPI_Supports method accepts one parameter of enumPlugInOperations type, which is
the operation requested.

To implement this method, modify the contents of the Select Case statement, and set to True
or False every return values, depending on the functionalities implemented by your plug-in.

Function declaration:

Public Function EPI_Supports(_
 ByVal lngFunctionality As enumPlugInOperations _
) As Boolean

See also:

EPI_Job method

EPI_Database method

EPI_DataTransmit method

eMedia knowledge base – Technical note #17 - 18 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

EPI_SetMode
This method is called by eMedia Card Designer when the user switches to the design mode or
to the operating mode, to provide this information to the plug-in in order to perform some
initialization tasks.

The EPI_SetMode method accepts one parameter of enumPlugInMode type, which contains the
new current mode (0 = Design mode, 1 = Operating mode).

Function declaration:

Public Sub EPI_SetMode(ByVal lngNewMode As enumPlugInModes)

See also:

eMedia knowledge base – Technical note #17 - 19 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

EPI_Job
This method is called by eMedia when one of these predefined actions occurs:

• A card print-out is beginning,

• A record is added in the database,

• A record is deleted in the database,

• A record is modified in the database,

• An image acquisition was performed,

• CoolReader have selected a record,

• A card file has been opened,

• A card file has been saved,

• A new card has been created,

• A job is finishing.

This function accepts one numeric parameter of Long type (int type in C). This value is one of
the enumPlugInOperations values and tells the plug-in what kind of operation is to begin. This
method doesn’t return anything.

The methods are called by eMedia Card Designer according to this scheme:

1. Call to the EPI_Supports method to ask the plug-in if it supports the operation
currently running in eMedia Card Designer. eMedia holds execution until the function
call is processed. If the function call returns true, the steps defined below are
performed.

2. Call to the EPI_Job method, to provide information about the operation that eMedia
Card Designer is performing. eMedia holds execution until the function call is
processed.

3. Call to the EPI_Database method, to provide database information. eMedia holds
execution until the function call is processed.

4. Call to the EPI_DataTransmit method for each object significant for the operation:

• For printing, for adding, modifying and deleting records: all card objects names
and values, and/or all database field names and values.

• For an image acquisition: the name of the photo object and its value (the file
name containing the picture taken). Beware of the fact that the picture file name
is a temporary file. The file will be deleted when the EPI_Job will be called again
with the PlugInEnd parameter.

• For CoolReader™: the database linked field name and the value.

• For a card opened: the file name of the card and the current mode of eMedia.

• For a card saved: the file name of the card.

• For a card creation: nothing.

5. Call to the EPI_Job method to inform the plug-in that the operation is finished.

Example:

1. The user clicks on the “Delete record” button in operation mode while a database
record is displayed. eMedia reads the Active property to see if the plug-in is active. If
the property returns false, eMedia jumps to step 8 below.

2. If the Active property is true, eMedia calls the EPI_Supports method:
EPI_Supports(PlugInDBDelete)

eMedia knowledge base – Technical note #17 - 20 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

3. If the call returned TRUE, eMedia calls the EPI_Job method:
EPI_Job(PlugInDBDelete)

4. eMedia calls the EPI_Database method and provides the current recordset:
EPI_Database(CurrentRecordsetObject)

5. eMedia calls the EPI_DataTransmit for the first database field:
EPI_DataTransmit(PlugInDBField, "BIRTH_YEAR", 1950, 4)

6. eMedia calls the EPI_DataTransmit method for the second object on the card, for the
third, etc

7. eMedia calls the EPI_Job method at the end to inform the plug-in that everything has
been provided:
EPI_Job(PlugInEnd)

8. eMedia deletes the record in the database.

A call to the EPI_Job method is followed by one call to the EPI_Database method, then zero,
one or more calls to the EPI_DataTransmit method, then by another call to EPI_Job with the
value PlugInEnd.

Function declaration:

Public Sub EPI_Job(ByVal op As enumPlugInOperations)

See also:

Active property

EPI_Supports method

EPI_Database method

EPI_DataTransmit method

eMedia knowledge base – Technical note #17 - 21 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

EPI_Database
This method is called by eMedia Card Designer just after the call to EPI_Job, and provides to
your plug-in the current ADO recordset object.

This method accepts two parameters:

• The first parameter is an instance of the ADODB.Recordset class. This parameter is an
ADO Recordset, and is really the recordset used in eMedia. So, you must not modify
this recordset directly, nor move to another record.

• The second parameter is one of the values of the enumDBEngine enumeration, and
specifies the type of the database (if you have to check its capabilities).

If you plan to modify data in the recordset, it will be better to clone it first, then to do your
modifications on the cloned recordset.

If you don’t want to use the EPI_Database method nor the database capabilities, perform the
following steps:

1. Remove the project reference to the Microsoft® ADO libraries: Open the "Project"
menu in Microsoft® Visual Basic™ and click on the "References" command. In the
references list, uncheck the "Microsoft ActiveX Data Objects 2.5 library" element, and
press OK.

2. Remove the m_Recordset variable in the general declarations section of the class
module.

3. Remove the EPI_Database method.

Function declaration:

Public Sub EPI_Database(ByVal rsData As ADODB.Recordset, _
 ByVal lngDatabaseEngine As enumDBEngine)

See also:

EPI_Supports method

EPI_Job method

eMedia knowledge base – Technical note #17 - 22 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

EPI_DataTransmit
This method is called by eMedia Card Designer to provide an object value. The object can be a
database field, a record number, a card object, the front side of the card, the back side of the
card, the smart card chip value or the magnetic strips values.

This method accepts four parameters:

• One of the values of the enumPlugInDataSource enumeration. This value is a Long
(int type in C). This parameter informs the plug-in about the object transmitted.

• A string which contains the object name (for objects on the card) or the field name
(for database fields), or a special term enclosed with ":". This value is a String
(LPSTR type in C).

• A variant which contains the value of the object. As it is of Variant type, you must
retrieve the sub-type by yourself. You can use the VarType() function of Microsoft®
Visual Basic™ for that purpose.

• The size of the third parameter in bytes (or in characters for string values). This value
is a Long (int type in C).

In this method, you can store the values, the object names or perform directly an operation
onto the object. Beware of the fact that the object name and value is passed by value, not by
reference: acting on this name and/or this value doesn’t affect the original object in eMedia
Card Designer.

Function declaration:

Public Sub EPI_DataTransmit(ByVal parmSource As enumPlugInDataSource, _
 ByVal parmName As String, _
 ByVal parmValue As Variant, _
 ByVal parmSize As Long)

See also:

EPI_Job method

eMedia knowledge base – Technical note #17 - 23 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

FUNCTIONS CALLS
This section contains the calls scheme for any operation occurred in eMedia Card Designer
notified to the plug-in.

All these calls are performed synchronously. eMedia Card Designer always hangs while the
plug-in method or property is running.

eMedia knowledge base – Technical note #17 - 24 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

Database record addition

The user clicks on the
"Write record" button

eMedia creates the record
in the database

EPI_Job(PlugInDBAdd)

EPI_Database(rs)

EPI_DataTransmit(PlugInDBRecordNumber,":RECORD_NO:", RecordNumber, Size)

Did eMedia sent all
the field values?

EPI_DataTransmit(PlugInDBField, FieldName, FieldValue, Size)

No

EPI_Job(PlugInEnd)

Yes

Begin

End

eMedia internal process

Calls to the Plug-In

Database record modification

The user clicks on the
"Write record" button

eMedia modifies the record
in the database

EPI_Job(PlugInDBModify)

EPI_Database(rs)

EPI_DataTransmit(PlugInDBRecordNumber,":RECORD_NO:", RecordNumber, Size)

Did eMedia sent all
the field values?

EPI_DataTransmit(PlugInDBField, FieldName, FieldValue, Size)

No

EPI_Job(PlugInEnd)

Yes

Begin

End

eMedia internal process

Calls to the Plug-In

eMedia knowledge base – Technical note #17 - 25 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

Database record deletion

The user clicks on the
"Delete record" button

eMedia deletes the record
from the database

EPI_Job(PlugInDBDelete)

EPI_Database(rs)

EPI_DataTransmit(PlugInDBRecordNumber,":RECORD_NO:", RecordNumber, Size)

Did eMedia sent all
the field values?

EPI_DataTransmit(PlugInDBField, FieldName, FieldValue, Size)

No

EPI_Job(PlugInEnd)

Yes

Begin

End

eMedia internal process

Calls to the Plug-In

Does the user
confirm?No

Yes

CoolReader finds a record

The user uses CoolReader

EPI_Job(PlugInCoolReader)

EPI_Database(rs)

EPI_DataTransmit(PlugInDBField, LinkedFieldName, FieldValue, Size)

EPI_Job(PlugInEnd)

Begin

End

eMedia internal process

Calls to the Plug-In

Does CoolReader
find a record?

The corresponding card is
displayed

YesNo

eMedia knowledge base – Technical note #17 - 26 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

New card template created

The user creates a new card in
Design mode

EPI_Job(PlugInCardNew)

EPI_Job(PlugInEnd)

Begin

End

eMedia internal process

Calls to the Plug-In

Card template opened

The user opens a file

EPI_Job(PlugInCardOpen)

EPI_Database(rs)

EPI_DataTransmit(PlugInCardInfo, ":NAME:", FileName, Size)

EPI_Job(PlugInEnd)

Begin

End

eMedia internal process

Calls to the Plug-In

EPI_DataTransmit(PlugInCardInfo, ":MODE:", 0/1, 4)

The file is loaded into memory

0 = Operation mode
1 = Design mode

Card template saved

The user saves the file in
Design mode

EPI_Job(PlugInCardSave)

EPI_Database(rs)

EPI_DataTransmit(PlugInCardInfo, ":NAME:", FileName, Size)

EPI_Job(PlugInEnd)

Begin

End

eMedia internal process

Calls to the Plug-In

The file is saved on disk

eMedia knowledge base – Technical note #17 - 27 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

Card printout

The user prints the card

EPI_Job(PlugInPrint)

EPI_Database(rs)

EPI_DataTransmit(PlugInStartEncoding, "", "", 0)

EPI_Job(PlugInEnd)

Begin

End

eMedia internal process

Calls to the Plug-In

eMedia refreshes the card preview

Encode smart card? EPI_DataTransmit(PlugInSmartCard, ":SMART_CARD:", Value, Size)Yes

eMedia encodes the smart card by calling the external programNo

Encode
contactless
smart card?

EPI_DataTransmit(PlugInContactLess, ":CONTACTLESS:", Value, Size)Yes

eMedia encodes the contactless (external program / internal process)

Encode
magnetic strip

#1?
EPI_DataTransmit(PlugInMagneticStrip1, ":MAGNETIC_STRIP_1:", Value, Size)Yes

eMedia encodes the magnetic strip #1
No

Encode
magnetic strip

#2?
EPI_DataTransmit(PlugInMagneticStrip2, ":MAGNETIC_STRIP_2:", Value, Size)Yes

eMedia encodes the magnetic strip #2
No

Encode
magnetic strip

#3?
EPI_DataTransmit(PlugInMagneticStrip3, ":MAGNETIC_STRIP_3:", Value, Size)Yes

eMedia encodes the magnetic strip #3
No

EPI_DataTransmit(PlugInStartPrinting, "", "", 0)

eMedia notifies the beginning
of the encoding phase.

eMedia notifies the beginning of the printing phase.

All the objects
of the front side have

been printed?

eMedia refreshes the card preview eMedia refreshes the card, as data from the database
may have been changed by the previous calls.

EPI_DataTransmit(PlugInCardObject + PlugInFrontSide, ObjectName, ObjectValue, Size)No

eMedia prints the next object

All the objects
of the back side have

been printed?

Yes

EPI_DataTransmit(PlugInCardObject + PlugInBackSide, ObjectName, ObjectValue, Size)No

eMedia prints the next object

No

Yes

eMedia knowledge base – Technical note #17 - 28 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

Photo acquisition

The user acquires a picture

EPI_Job(PlugInAcquire)

EPI_Database(rs)

PI_DataTransmit(PlugInCardObject, PhotoCardObjectName, FileName, Size)

EPI_Job(PlugInEnd)

Begin

End

eMedia internal process

Calls to the Plug-In

eMedia saves the photo in a
disk file

eMedia knowledge base – Technical note #17 - 29 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

PART II

THE CARDOBJECTS CLASS REFERENCE

eMedia knowledge base – Technical note #17 - 30 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

REFERENCE
The CardObjects class is a public non-creatable class of eMedia Card Designer. As a public
class, a client program or a server program can use its members, properties and methods;
but, as a non-creatable class, no client program or server program is able to create a new
instance of this class.

Your own software component (either a client program or a server program) can retrieve one
instance of this class:

• In client programs (applications that take control of eMedia Card Designer through the
eMedia.Application component), the CardObjects property of the Application class
returns one instance of this class.

• In server programs (applications called by eMedia Card Designer when events occur –
also known as plug-ins), the EPI_GetCardObject method is called by eMedia, providing
as parameter one instance of this class.

Once the instance retrieved, you may use the methods of this class (no properties are
available yet), applied to the retrieved object to obtain in-depth information on the currently
opened card template opened in the software.

This section of the document describes these methods:

Methods

Name Description Build

GetCardFilename Returns the current card template file name. 630+

GetSides Returns the sides of the current card template. 630+

GetCardBackgroundFile Returns the file name of the picture in the card
background.

630+

GetCardBackgroundPrint Returns if the background must be printed or not. 630+

SaveBitmap Saves the picture in a Photo object or in an
Image object on disk.

630+

GetObjectName Returns the name of a card object. 630+

GetObjectType Returns the type of a card object. 630+

GetObjectProperty Returns the value of a property of a card object. 630+

Request Reserved for future usage 630+

eMedia knowledge base – Technical note #17 - 31 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

GetCardFilename
This method returns the current card template file name (.emc file). This name contains the
drive (DOS notation) or the server name and the resource name (UNC notation), followed by
the path name, the file name and the file extension (typically ".emc").

Function declaration:

Public Function GetCardFilename() As String

Parameters

None.

Return value type:

String

See also:

eMedia knowledge base – Technical note #17 - 32 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

GetSides
This method returns information about the sides of the current card template opened in eMedia
Card Designer. The returned value may be one of the following values:

Value Description

1 The current card template only contains a front side.

2 The current card template only contains a back side.

3 The current card template is two-sided.

Function declaration:

Public Function GetSides() As Long

Parameters

None.

Return value type:

Long

See also:

eMedia knowledge base – Technical note #17 - 33 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

GetCardBackgroundFile
This method returns the file name of the background picture. This name contains the drive
(DOS notation) or the server name and the resource name (UNC notation), followed by the
path name, the file name and the file extension.

Function declaration:

Public Function GetCardBackgroundFile(ByVal Side As Long) As String

Parameters

The Side parameter must contain the side of the card template for which the background
picture file name is to be retrieved. The value may be 1 for front side or 2 for back side.

Return value type:

String

See also:

GetCardBackgroundPrint method

eMedia knowledge base – Technical note #17 - 34 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

GetCardBackgroundPrint
This method returns TRUE if the background picture must be printed, FALSE if it will not be
printed.

Function declaration:

Public Function GetCardBackgroundPrint(ByVal Side As Long) As Boolean

Parameters

The Side parameter must contain the side of the card template for which the background
picture file name is to be retrieved. The value may be 1 for front side or 2 for back side.

Return value type:

Boolean

See also:

GetCardBackgroundFile method

eMedia knowledge base – Technical note #17 - 35 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

SaveBitmap
This method saves in a disk file the picture contained in a Photo object, an Image object or in
the card background. The parameters specify the saving options. If the picture cannot be
saved, the function fires an error.

Function declaration:

Public Sub SaveBitmap(ByVal ObjectSide As Long, _
 ByVal ObjectName As String, _
 ByVal BitmapWidth As Long, _
 ByVal BitmapHeight As Long, _
 ByVal FilePath As String, _
 ByVal FileType As Long, _
 ByVal FileBpp As Long, _
 ByVal FileQuality As Long)

Parameters

ObjectSide This parameter must contain the side of the card template containing the
object to save. This value must be 1 for front side or 2 for back side.

ObjectName This parameter must contain the name of the Photo object or Image
object containing the picture. Specify "*" to save the card background.

BitmapWidth Width of the resulting picture (in pixels). The class instance in eMedia will
resize the picture (keeping the ratio) to this width before saving. Notice
that the original picture in eMedia will not be changed.

BitmapHeight Height of the resulting picture (in pixels). The class instance in eMedia
will resize the picture (keeping the ratio) to this height before saving.
Notice that the original picture in eMedia will not be changed.

FilePath File name and path in which the picture will be saved.

FileType Picture format. This value must be 1 to save as a Windows Bitmap file
(.bmp) or 2 to save as a JPEG file (.jpg)

FileBpp Color depth of the picture to save. This value must be one of the
following:

FileType = 1 (Windows bitmap)
1......... Black & White
4......... 16 colors
8......... 256 colors
16 Hi-color (65536 colors)
24 True color
32 True color 32 bits per pixel.

FileType = 2 (JPEG)
8......... Grayscale
24 True color

FileQuality Quality factor for JPEG pictures. This value is ignored if the picture is
saved as a Windows bitmap. The value must be between 0 (worst
quality) and 100 (best quality)

Return value type:

None.

If the function isn't able to save the picture, an error is fired.

Examples:

eMedia knowledge base – Technical note #17 - 36 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

In this example, the contents of the pIdentity object located on the front of the card will
be saved in the c:\Pictures\Id.jpg file as a JPEG picture, true color, 85% quality. This file
will contain a 300x400 pixels picture:

x.SaveBitmap 1, "pIdentity", 400, 300, "c:\Pictures\Id.jpg", 2, 24, 85

In this example, the background picture of the back side of the card will be saved in the
C:\Pictures\Back1.bmp file as a Windows bitmap picture, true color. The bitmap file will
have a size of 1016x648 pixels:

x.SaveBitmap 2, "*", 1016, 648, "c:\Pictures\Back1.bmp", 1, 24, 100

See also:

GetCardBackgroundFile method

eMedia knowledge base – Technical note #17 - 37 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

GetObjectName
This method returns the name (Name property) of an object on the card, from its position in
the z-order (the position of the object in the z axis). The x and y axis locate the object from
the top left corner of the card. The z axis represents the position of the object relatively to the
other card objects. On your card, each object is on the top and/or on the back of the other
ones. The objects on the top cover the objects on the back. You may change this order in
eMedia Card Designer using the "Send to back" and "Bring to front" icons at the bottom of the
left toolbar.

Function declaration:

Public Function GetObjectName(ByVal Side As Long, _
 ByVal ZOrder As Long) As String

Parameters

The Side parameter must contain the side of the card template for which the background
picture file name is to be retrieved. The value may be 1 for front side or 2 for back side.

The ZOrder parameter must contain the z-order of the object to retrieve, from 0 to the
total count of card objects minus one.

Return value type:

String: the name of the card object.

If no object can be found and returned, the function fires the error number
0x080050006: "No such object on card".

See also:

GetObjectType method

eMedia knowledge base – Technical note #17 - 38 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

GetObjectType
This method returns the type of an object on the card as a string.

Function declaration:

Public Function GetObjectType(ByVal ObjectName As String) As String

Parameters

The ObjectName parameter must contain the name of the object.

Return value type:

String: the type of the object:
Text
BarCode
Image
Photo
Rectangle
Circle
Line

If the object doesn't exist, the method fires the error number 0x080050006: "No such
object on card".

See also:

GetObjectName method

eMedia knowledge base – Technical note #17 - 39 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

GetObjectProperty
This function returns the value of one property of any object. This value is always returned as
a string.

Function declaration:

Public Function GetObjectProperty(ByVal ObjectName As String, _
 ByVal PropertyName As String) As String

Parameters

The ObjectName parameter must contain the name of the object.

The PropertyName parameter must contain the name of the property for which you want
to retrieve the value. See below for the full list of properties, object type per object type.

Return value type:

String: the value of the property.

If the object doesn't exist, the method fires the error number 0x080050006: "No such
object on card".

If the object property can't be found, the method fires the error number 0x080050008:
"No such property: "PropertyName" for the object "ObjectName"".

See also:

GetObjectName method

GetObjectType method

Objects properties

eMedia knowledge base – Technical note #17 - 40 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

Request
This function is reserved for future usage. Currently, it fires an error number 0x080050002:
"Subfunction not available".

Function declaration:

Public Function Request(ByVal lFunction As Long, _
 ByVal sParams As String) As String

Parameters

The lFunction parameter must contain a subfunction number.

The sParams parameter must contain a string for the subfunction.

Return value type:

String: the return value of the subfunction.

Currently, the method always returns an error.

See also:

eMedia knowledge base – Technical note #17 - 41 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

OBJECTS PROPERTIES
The tables below list, object type per object type the property names you can request from the
GetObjectProperty method:

All objects Property name Description

 Height Height of the object in mm.

 Left Left position in mm.

 Locked 0 if the object is unlocked, 1 if it's locked.

 Name Name of the object.

 Side Side of the card for the object: 1=front, 2=back.

 Top Top position in mm.

 Width Width of the object in mm.

Text objects Property name Description

 Alignment Text alignment (0 = left, 1 = right, 2 = center).

 ChoiceList Choice list if Source=6.

 Data Contents of the object.

 DBField Database field if Source=5 or 7.

 Expression Expression if Source=4.

 FontCharset Charset used.

 FontColor Color of the text.

 FontName Name of the font.

 FontSize Size of the font in pt.

 FontStyle Bit mask of font characteristics (b0 set for bold,
b1: italic, b2: strikethrough, b3: underlined).

 Format Format string.

 Legend Caption text in the "Input" window.

 MultiLine 1 if multilined object, 0 otherwise.

 Rotation Angle of rotation in degrees.

 Source Source of datas:
0Fixed data
2User input
3Print counter
4Expression
5Database field
6Choice list
7Database choice.

 Type Always returns "Text"

 ToolTip Text of the tooltip for the "Input" window.

 Visible 1 if the object is visible, 0 otherwise.

 ZOrder Position on the z-axis.

eMedia knowledge base – Technical note #17 - 42 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

Barcode Property name Description

objects Alignment Alignment of the barcode (0 = left, 1 = right, 2 =
center).

 BackColor Color of the barcode background.

 BarWidth Width of the smallest bars.

 ChoiceList Choice list if Source=6.

 Data Contents of the object.

 DBField Database field if Source=5 or 7.

 Direction Direction of the barcode:
0Left to right
1Right to left
2Top to bottom
3Bottom to top.

 Expression Expression if Source=4.

 Format Format string.

 Legend Caption text in the "Input" window

 Notches 1 if notches are present, 0 otherwise.

 Source Source of datas:
0Fixed data
2User input
3Print counter
4Expression
5Database field
6Choice list
7Database choice.

 Style Style of the barcode:
0None
12 of 5 interleaved
33 of 9
4Codabar
53 of 9 extended
6Code128-A
7Code128-B
8Code128-C
9UPC-A
10 ...MSI Code
11 ...Code 93
12 ...Code 93 extended
13 ...EAN-13
14 ...EAN-8
16 ...ANSI 3 of 9
17 ...ANSI 3 of 9 extended
18 ...Code128
19 ...EAN-128
20 ...UPC-E
22 ...MSI Code (checksum)
51 ...2 of 5 (checksum)
53 ...3 of 9 (checksum).

 ToolTip Text of the tooltip for the "Input" window.

eMedia knowledge base – Technical note #17 - 43 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

Barcode Property name Description

objects Type Always returns "BarCode".

 ValueFontCharset Charset used for the value text.

 ValueFontName Name of the font of the value text.

 ValueFontSize Size of the font of the value text in pt.

 ValueFontStyle Bit mask of font characteristics (b0 set for bold,
b1 set for italic, b2 set for strikethrough, b3 set
for underlined).

 ValueVisible 1 if the value text is visible, 0 otherwise.

 ZOrder Position on the z-axis.

Image & Photo Property name Description

objects AutoZoom 1 if the auto zoom feature is turned on, 0
otherwise.

 BorderStyle 1 if a frame is drawn around the picture, 0
otherwise.

 CropLeft Distance in pixels between the left border of the
picture and the left border of the container.

 CropTop Distance in pixels between the top border of the
picture and the top border of the container.

 FileNaming File naming scheme:
1Automatic
2Manual
3Rule

 FileRule Expression to use when saving the picture.

 Legend Caption text in the "Input" window

 Picture Picture file name.

 Rotation Rotation angle in degrees.

 Source Always returns 1 for a Photo object and 0 for an
Image object.

 TwainSourceName Source of the acquisition.

 Type Always returns "Image" for Image objects or
"Photo" for Photo objects.

 Zoom Zoom level in percent.

 ZOrder Position on the z-axis.

Shape Property name Description

objects BackColor Color of the shape background.

 BackStyle 1 if the background is opaque, 0 if transparent.

 BorderColor Color of the shape border.

 BorderWidth Size of the border in dots.

 Rotation Rotation angle in degrees.

eMedia knowledge base – Technical note #17 - 44 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

Shape Property name Description

objects Source Always returns 0.

 Type Always returns "Rectangle" for Rectangle objects,
"Circle" for Oval objects and "Line" for Line
objects.

 ZOrder Position on the z-axis.

eMedia knowledge base – Technical note #17 - 45 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

CODE SAMPLES
The example below stores in the dynamic array TheObjects all the object names on the
current card template:

Sub RetrieveAllObjects(eMediaCardObjects As eMedia.CardObjects)
Dim lngSide As Long
Dim lngOrder As Long
Dim strObjectName As String
 On Error Resume Next
 Redim TheObjects(0)
 'Loop on the two sides of the card
 For lngSide = 1 To 2
 'Begin with lowest z-order
 lngOrder = 0
 Do Until Err.Number <> 0
 'Retrieve the next object name
 strObjectName = eMediaCardObject.GetObjectName(lngSide, lngOrder)
 If Err.Number = 0 Then
 'No error: object found, store it at the end of the array
 Redim Preserve TheObjects(UBound(TheObjects) + 1)
 TheObjects(UBound(TheObjects)) = strObjectName
 End If
 'Next object
 lngOrder = lngOrder + 1
 Loop
 Err.Clear
 Next lngSide
End Sub

The example below checks the contents of the text object on the card named tDepartment,
then compares it to a list of possible departments. If the value is found, it saves the picture in
the pIdentity photo object on the card in the folder having this department name, using the
card holder name (stored in the tName text object on the card) as the file name:

Function StorePictureInDept(eMediaCardObjects As eMedia.CardObjects) As String
Dim strDeptType As String
Dim strDeptValue As String
Dim strPictType As String
Dim lngPictSide As Long
Dim strHolder As String
Dim strPath As String
Const DEPARTMENTS = "marketing,sales,management,production,"
 On Error Resume Next
 'Check if the object exists and get the type
 strDeptType = eMediaCardObjects.GetObjectType("tDepartment")
 If Err.Number <> 0 Then
 'Error: exit
 StorePictureInDept = "Cannot find the tDepartment object"
 Exit Function
 End If
 'Check object type
 If strDeptType <> "Text" Then
 StorePictureInDept = "tDepartment is not a Text object"
 Exit Function
 End If
 'Type if ok, get contents
 strDeptValue = eMediaCardObjects.GetObjectProperty("tDepartment", "Data")
 'Check contents
 If InStr(1, DEPARTMENTS, strDeptValue & ",", vbTextCompare) = 0 Then
 StorePictureInDept = "tDepartment doesn't contain a valid value"

eMedia knowledge base – Technical note #17 - 46 -

© 1999-2006 Mediasoft Technologies All rights reserved
228, rue de la Convention – 75015 Paris - France

 Exit Function
 End If
 'Department OK. Check if pIdentity exist, get its type and card side.
 strPictType = eMediaCardObjects.GetObjectType("pIdentity")
 If Err.Number <> 0 Then
 StorePictureInDept = "Cannot find the pIdentity object"
 Exit Function
 End If
 If strPictType <> "Photo" Then
 StorePictureInDept = "pIdentity is not a Photo object"
 Exit Function
 End If
 lngPictSide = CLng(eMediaCardObjects.GetObjectProperty("pIdentity", "Side"))
 'Get the holder's name
 strHolder = eMediaCardObjects.GetObjectProperty("tName", "Data")
 If Err.Number <> 0 Then
 StorePictureInDept = "Cannot find the tName object"
 Exit Function
 End If
 'Avoid an empty name
 If Len(strHolder) = 0 Then strHolder = "Unknown"
 'build the path for the picture to save
 strPath = "C:\Pictures\" & strDeptValue & "\" & strHolder & ".jpg"
 'Then save the picture
 eMediaCardObjects.SavePicture lngSide,"pIdentity",300,400,strPath,2,24,85
 'Finished
 StorePictureInDept = "Ok, picture is saved in """ & strPath & """"
 Err.Clear
End Sub

	Front cover
	Table of contents
	Revision information
	Summary
	About the plug-ins
	About this document

	What is needed to create your own plug-in
	Copying the files
	Registering the COM component
	Registering the plug-in in eMedia
	The plug-in descriptor file

	Opening the sample plug-in source code
	Class and project properties
	Plug-in source code

	PART I - Plug-in component reference
	Reference
	Active property
	EPI_Initialize method
	EPI_GetCardObject method
	EPI_Terminate method
	EPI_Preferences method
	EPI_Supports method
	EPI_SetMode method
	EPI_Job method
	EPI_Database method
	EPI_DataTransmit method

	Functions calls
	Database record addition
	Database record modification
	Database record deletion
	CoolReader finds a record
	New card template created
	Card template opened
	Card template saved
	Card printout
	Photo acquisition

	PART II - The CardObjects class reference
	Reference
	GetCardFilename
	GetSides
	GetCardBackgroundFile
	GetCardBackgroundPrint
	SaveBitmap
	GetObjectName
	GetObjectType
	GetObjectProperty
	Request

	Objects properties
	Common properties
	Text objects
	Barcode objects
	Image & Photo objects
	Shape objects

	Code samples

